
Error Analysis in
Experimentation

Experimentation involves observations, measurements, and
analyses.

The quality of the final results, assessed by the reliability of data,
depends on the quality of the measurements and the rigor with
which the data are analyzed.

Central to the critical analysis of experimental data is a
thorough understanding of the sources and the magnitudes of
the errors associated with it.

There are always limitations in discovering the "ultimate
reality" about a system that we wish to characterize.

These limitations cause discrepancies between our
experimental result and the "true value" of the quantity of
interest.

The fact is that the true value is defined in statistics as the
mean of the sample population composed of an infinite
number of measurements.

Implication: that any result obtained from a finite set of data
may be in error to some extent.

The sources of error are categorized as systematic and random.

A systematic error arises from a bias that is placed on the
measurement either by the instrument itself or by a consistently
improper method of reading the instrument.

Random errors arise from intrinsic limitations in the sensitivity
of the instrument and in the ability of the user to interpret the
instrument's output.

Many measurements of a quantity are likely to be slightly
different each time the measurement is made.

These fluctuations in the reading would be caused by the
inherent inability of the electronic and mechanical components
of the balance to function absolutely reproducibly.

It is possible to observe a pattern in the observed random
fluctuations of the measurements and they can be
characterized.

There exists a distribution of such measured values and
it can be expressed in a definite mathematical way (Gaussian
distribution).

Accuracy and Precision

An experimental measurement has high precision if the random
errors (fluctuations) are small. Many significant figures are
justified.

A measurement is accurate if there are small systematic errors.
If so there is no intrinsic bias to the measurement, and its value
approaches the true or accepted one.

There is no relationship between accuracy and precision. An
experiment can have small random errors and still give
inaccurate results due to large systematic errors.

An experiment with large random errors may still be accurate
in the sense that the "true" or accepted value lies within the
limits of error reported.



Another type of error is sometimes referred to as a "blunder'‘,
a mistake. It is often evidenced by way the data point
"sticks out”.

It is considered acceptable to throw this data point out, and
there are rigorous statistical tests that can be applied to justify
this decision.

Systematic errors can also be minimized through proper
instrument calibration and more careful experimental
practices.

Yet another type of error, sometimes referred to as a
"model error," is less obvious and potentially more serious
than a blunder.
.
Model errors can be difficult to detect because it is often
easier to mistrust your data than to question the validity of
the theory that is supposed to be demonstrated by them.

Data are the facts on which science is built, and theories that
do not conform  to the facts must be modified or rejected.

Estimating Properties

Mean

If a measurement of some property x of a system is repeated
several times the mean or average value of x,  on which
n independent measurements have been made is defined as,
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If the errors associated with the measurements are completely
random in nature, the data distribution follows a Gaussian
distribution and mean is the best estimate of the true value of
the property that can be obtained.

The sample variance, S2, which is defined as;
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S = sample standard deviation

S quantifies the precision/uncertainty/error (dispersion of data
about the mean). For large n and data randomly distributed,
~68% of the data fall within  units of the mean.

S  as N .

 = population
standard deviation

Standard Deviation, S

When multiple variables contribute to uncertainty,
the overall variance is the sum of the variances from
each variable.

Standard Error (Standard Error of the mean) Sm

If two series of measurements are made on the same system,
the average value determined from the first series will in all
likelihood be different from the value obtained from the second.

If a large number of these series were performed, the
respective mean values would be symmetrically distributed
about the "true value," and the standard deviation of the
such a distribution is defined as the standard error of the mean
would be given by,
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The precision of the mean can be raised by increasing n.



Confidence Limits

Once Sm is determined, confidence limits can be obtained.
The range on both sides of the mean within which the
"true value, " can be expected to be found for a degree
of "confidence of c%“

The range  is calculated from error/uncertainty ,
calculated from,

t = Students t value taken from Students t table.
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Student’s t Distribution

In practice the replications, n , and is finite, often n < 20.
The best estimate of true value is still the average, and even
though S and Sm can be calculated its usefulness is unclear
because the probability distribution (Gaussian) is unknown.

The distribution function that would apply to limited n (therefore
limited  (=n-1) with an unknown  is the Student’s t distribution
P().
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Expression of  numerical results:

Sample mean   (95% Confidence level, n = #)

True mean = .

Confidence Limits

Within what values would  (the population mean) be,
so that one can be c% confident that  is indeed in that interval?

The confidence limits and  interval are calculated using,
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Find the value of Student's t from tables relevant to (n-1)
degrees of freedom at desired c% confidence.
n = # replications

Rejection of outliers: Q Test

Outliers are not always obvious.  To reject a suspicious
data point from set of n data points, where there is no
obvious gross error, the Q test is used.

a. Arrange the data in the order of increasing value.

b. Determine the range = (xmax - xmin)

c. Find the difference between the data point in question,
and its nearest neighbor. gap = |Xq-Xn|

d. Calculate the rejection quotient Qcalc as;

e If Qcalc < Qtable for the n, accept xq for a given confidence
level, 90% - norm. (> i.e 10% chance it is an outlier).

Q
gap

rangecalc 



??

Outliers, if exists appear at the extremes.

Rejection of outliers: Grubbs Test

Calculate the Grubbs statistic.
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G
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Compare Gcalc vs Critical table values for G for n observations

If Gcalc < Gtable; accept the questionable value at 95% CL.

Discarding Data

Another method for deciding whether a data point can be
justifiably discarded is to evaluate the mean without the
‘suspect data point’.

Then determine if this point deviates from the mean by
more than four times the average deviation of the other points.

The average deviation is defined as,
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Propagation of (Random) Errors

Once measurements (x, y, z..) are made and estimates of the
uncertainties associated with each of the individual
measurements have been obtained x, y, z .., their combined
effect on the quantity of interest, F, must be assessed.

This procedure is known as the propagation of errors.
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Squaring and eliminating the high order terms leads to,
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Only variances are additive, not standard deviations!
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Some general examples:

If the general approach using the following expression;
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We get,

The expression for F is can be such that the functional form
requires care to justify a breakdown of the procedure into
steps.

F = f (A, B)  where A = f(x1, x1, ..) and  B = f(y1, y1, ..)
with A and B independent.

If the terms A, B, etc.. are not independent the error
calculated in this manner will be incorrect.

e.g.  F = a(ex -1) + b(y-cx) = A + B

If the general approach using the following expression;
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Would result in,



Single measurements:

measurement: number unit

The accuracy of the measurement is limited by the capability
of the measuring instrument.

The last digit of the number of a measurement is a considered
judgment, estimate. (a source of uncertainty).

58.4 %

0.235

Linear scale

Logarithmic scale

58.4 means actual value is between 58.0 and 59.0.
0.235 means actual value is between 0.230 and 0.240.
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Better instruments will allow more precise measurements -
better estimates - uncertainty can be minimized but never eliminated.

Significant figures:

measurement - 104.036 m


uncertain, but must
be included in the number

The uncertain position in the number limits the number of
digits in a measurement, hence the need for the definition of
significant figures.

Significant figures:

measurement - 104.036 m


Expressed in
scientific notation: (6)

 
pre-exponent exponent

significant figures = non-place-holding digits in a reported
measurement = # of digits in the pre-exponent.

ZEROs of a number are significant in a number if (i) in the
middle of a number (ii) at the end on the rhs of decimal point.
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1.04036

10

104.036 10

             = 100.

0.0

4036

1040   = 1036
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1) All non-zero digits are significant
1.5 has 2 sig. figs.

2) Interior zeros are significant
1.05 has 3 sig. figs.

3) Leading zeros are NOT significant
0.001050 has 4 sig. figs.
1.050 x 10-3 has 4 sig. figs.

4) Trailing zeros may or may not be significant
i. Trailing zeros after a decimal point are significant

1.050 has 4 sig. figs.
ii. Zeros at the end of a number without a written decimal

point are ambiguous and should be avoided by using
scientific notation

if 150 has 2 sig. figs. then 1.5 x 102

but if 150 has 3 sig. figs. then 1.50 x 102



ALL DIGITS  OF A MEASUREMENT INCLUDING THE
UNCERTAIN ONE are called SIGNIFICANT FIGURES.

Or

Significant figures is the proper number of digits in the
number.

Exact numbers have an unlimited number of significant figures
(meaning there are no uncertainties – do not worry about it’s
sig. figs.).

A number (e.g. integers) whose value is known with complete
certainty (exactly) are

a. integral powers of 10

b. numbers from counting individual objects (integers)

c. numbers from definitions and defined constants
1 cm = 0.01 m; c = 299792458 m s-1 (vacuum)
http://physics.nist.gov/cuu/Constants/

and d. integer values (in equations)

radius of a circle = diameter of a circle
2

12.0
3.0045

61.830452
76.834952 (calculator)

76.834952 (roundoff); 76.8

1.632105 1.632 105

4.107103 0.04107105

0.934106 9.34 105

11.51307105 11.51105

Express all numbers
with same exponent

a. addition and subtraction:
i.  add numbers
ii. round off at the proper decimal

place

Result has decimal places same
as the # with the least decimals

.
. .

.

 
 

12212341 3600 0 02328
1000x 100

3 4842

x = 3.374876 = 3.375  (note rounding off)

Integers and
powers of 10
has no uncertainty

b. multiplication and division:

i.  perform the calculation
ii. round off at the proper decimal

place

Result has the same # sig. fig. as the #
with the least # sig. fig.

Rounding Off:

Look at the left most digit to be dropped

<5, no change of retained digit
>5, increase retained digit by 1
=5, increase retained digit as is, if it is odd

1yd 1m
69.5in 1.765321466m 1.76m

36in 1.0936yd
   

c. logarithms:    log 25.158 = 1.40070 (6)
 

characteristic mantissa

mantissa has the same # sig.fig. as that of the number.
round off at the correct position.

d. antilogs:
will carry sig. figs. equal to the number of digits in the mantissa.

antilog (1.4007)=25.16 (4)
 round off such

that it contains same #
sig. fig. as mantissa

e. y=x      y has same # sig. figs. as x



Arithmetic operations:

The precision of a calculated result is determined by the
number with the lowest precision.

a. addition and subtraction:

Result has decimal places same as the # with the least
decimals.

b. multiplication and division:

Result has the same # sig. fig. as the # with the least # sig. fig.

Disregard the uncertainty of integers and powers of 10,
because they are exact.

Std. deviation of computed results, propagation of errors:

a. addition & subtraction

(same approach for , use  in place of s)
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b. multiplication & division

1 2 1
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(same approach for ), the significant figure of the final
result must be consistent with uncertainty.
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Rounding Off:

Look at the left most digit to be dropped

<5, no change of retained digit
>5, increase retained digit by 1
=5, increase retained digit by 1, if it is odd

1yd 1m
69.5in 1.765321466m 1.77m

36in 1.0936yd
   

c. logarithms:    log 25.158 = 1.40070 (6)
 

characteristic mantissa

mantissa has the same # sig.fig. as that of the number.
round off at the correct position.

d. antilogs:
will carry sig. figs. equal to the number of digits in the mantissa.

antilog (1.4007)=25.16 (4)
 round off such

that it contains same #
sig. fig. as mantissa

e. y=x      y has same # sig. figs. as x



Significant figures of a calculated result is determined by the
first non zero digit of the uncertainty ( or s) associated with it.
Calculate the uncertainty first before deciding on the significant
figures of the final computed value. Both the computed result
and the uncertainty must be consistent in terms of the number
of digits beyond the decimal point.

0.002364 0.000003
0.0946 0.0002

0.02500 0.00005

0.002664 0.000003
0.1066 0.0002

0.02500 0.00005

0.821 0.002
1.022 0.004

0.803 0.002
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4 3
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Estimating uncertainty of a single measurement

Sometimes the uncertainty is not expressed explicitly, for a
single measurement. Then the error is considered to be at the
last digit (or last two digits) of the significant digits of the
measurement given. Uncertainty has one significant digit, usually.
The number of decimals of both value and error are same.
e.g. a single measurement like 1.047m has an uncertainty

of  0.001 m.

R = 8.3144621  0.0000075   JK-1mol-1 (best available, n large)

R = 8.3145  0.0001 JK-1mol-1

Unit conversion relations are not considered in significant
digit assignments. http://www.onlineconversion.com/


